Topological insulator nanowires and nanoribbons.

نویسندگان

  • Desheng Kong
  • Jason C Randel
  • Hailin Peng
  • Judy J Cha
  • Stefan Meister
  • Keji Lai
  • Yulin Chen
  • Zhi-Xun Shen
  • Hari C Manoharan
  • Yi Cui
چکیده

Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi(2)Se(3) material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi(2)Se(3) nanomaterials with a variety of morphologies. The synthesis of Bi(2)Se(3) nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with approximately 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous Aharonov-Bohm conductance oscillations from topological insulator surface states.

We study Aharonov-Bohm (AB) conductance oscillations arising from the surface states of a topological insulator nanowire, when a magnetic field is applied along its length. With strong surface disorder, these oscillations are predicted to have a component with anomalous period Φ(0)=hc/e, twice the conventional period. The conductance maxima are achieved at odd multiples of 1/2Φ(0), implying tha...

متن کامل

Production and Characterization of Topological Insulators

Topological insulators (TIs) represent a novel category of material whose bulk insulates, but whose surface conducts. The ability to produce topological insulators would be of great interest, because electron states can cross the insulating band gap, as well as surface conduction and spin-locking properties [1]. Bismuth selenide (Bi2Se3) is one of the best candidates for three dimensional (3D) ...

متن کامل

Quantum coherent transport in SnTe topological crystalline insulator thin films

Articles you may be interested in Calculation of room temperature conductivity and mobility in tin-based topological insulator nanoribbons Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition Appl.

متن کامل

Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons.

We report the study of a novel linear magneto-resistance (MR) under perpendicular magnetic fields in Bi(2)Se(3) nanoribbons. Through angular dependence magneto-transport experiments, we show that this linear MR is purely due to two-dimensional (2D) transport, in agreement with the recently discovered linear MR from 2D topological surface state in bulk Bi(2)Te(3), and the linear MR of other gapl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2010